FP3 Vectors

1. June 2010 qu. 1

The line l_{1} passes through the points $(0,0,10)$ and $(7,0,0)$ and the line l_{2} passes through the points $(4,6,0)$ and $(3,3,1)$. Find the shortest distance between l_{1} and l_{2}.
2. June 2010 qu. 7

A line l has equation $\mathbf{r}=\left(\begin{array}{c}-7 \\ -3 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -2 \\ 3\end{array}\right)$. A plane Π passes through the points $(1,3,5)$ and $(5,2,5)$, and is parallel to l.
(i) Find an equation of Π, giving your answer in the form $\mathbf{r} \cdot \mathbf{n}=p$.
(ii) Find the distance between l and Π.
(iii) Find an equation of the line which is the reflection of l in Π, giving your answer in the form $\mathbf{r}=\mathbf{a}+t \mathbf{b}$.
3. Jan 2010 qu. 1

Determine whether the lines

$$
\frac{x-1}{1}=\frac{y+2}{-1}=\frac{z+4}{2} \text { and } \frac{x+3}{2}=\frac{y-1}{3}=\frac{z-5}{4}
$$

intersect or are skew.
4. Jan 2010 qu. 5

A regular tetrahedron has vertices at the points

$$
A\left(0,0, \frac{2}{3} \sqrt{6}\right), \quad B\left(\frac{2}{3} \sqrt{3}, 0,0\right), \quad C\left(-\frac{1}{3} \sqrt{3}, 1,0\right), \quad D\left(-\frac{1}{3} \sqrt{3},-1,0\right) .
$$

(i) Obtain the equation of the face $A B C$ in the form $\quad x+\sqrt{3} y+\left(\frac{1}{2} \sqrt{2}\right) z=\frac{2}{3} \sqrt{3}$.
(ii) Give a geometrical reason why the equation of the face $A B D$ can be expressed as

$$
\begin{equation*}
x-\sqrt{3} y+\left(\frac{1}{2} \sqrt{2}\right) z=\frac{2}{3} \sqrt{3} \tag{2}
\end{equation*}
$$

(iii) Hence find the cosine of the angle between two faces of the tetrahedron.
5. June 2009 qu. 3

A line l has equation $\frac{x-6}{-4}=\frac{y+7}{8}=\frac{z+10}{7}$ and a plane p has equation $3 x-4 y-2 z=8$.
(i) Find the point of intersection of l and p.
(ii) Find the equation of the plane which contains l and is perpendicular to p, giving your answer in the form $a x+b y+c z=d$.
6. June 2009 qu. 6

The plane Π_{1} has equation $\mathbf{r}=\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)+\mu\left(\begin{array}{c}1 \\ -5 \\ -2\end{array}\right)$.
(i) Express the equation of Π_{1} in the form $\mathbf{r} . \mathbf{n}=p$.

The plane Π_{2} has equation \mathbf{r}. $\left(\begin{array}{c}7 \\ 17 \\ -3\end{array}\right)=21$.
(ii) Find an equation of the line of intersection of Π_{1} and Π_{2}, giving your answer in the form $\mathbf{r}=\mathbf{a}+t \mathbf{b}$.
7. Jan 2009 qu. 3

Two skew lines have equations $\frac{x}{2}=\frac{y+3}{1}=\frac{z-6}{3}$ and $\frac{x-5}{3}=\frac{y+1}{1}=\frac{z-7}{5}$.
(i) Find the direction of the common perpendicular to the lines.
(ii) Find the shortest distance between the lines.
8. Jan 2009 qu. 6

The cuboid $O A B C D E F G$ shown in the diagram has $\overrightarrow{O A}=4 \mathbf{i}, \overrightarrow{O C}=2 \mathbf{j}, \overrightarrow{O D}=3 \mathbf{k}$, and M is the mid-point of $G F$.
(i) Find the equation of the plane $A C G E$, giving your answer in the form $\mathbf{r} . \mathbf{n}=p$.
(ii) The plane $O E F C$ has equation $\mathbf{r} .(3 \mathbf{i}-4 \mathbf{k})=0$. Find the acute angle between the planes $O E F C$ and $A C G E$.
(iii) The line $A M$ meets the plane $O E F C$ at the point W. Find the ratio $A W: W M$.
9. June 2008 qu. 2

Find the acute angle between the line with equation $\mathbf{r}=2 \mathbf{i}+3 \mathbf{k}+t(\mathbf{i}+4 \mathbf{j}-\mathbf{k})$ and the plane with equation $\mathbf{r}=2 \mathbf{i}+3 \mathbf{k}+\lambda(\mathbf{i}+3 \mathbf{j}+2 \mathbf{k})+\mu(\mathbf{i}+2 \mathbf{j}-\mathbf{k})$.
10. June 2008 qu. 5

Two lines have equations $\frac{x-k}{2}=\frac{y+1}{-5}=\frac{z-1}{-3} \quad$ and $\quad \frac{x-k}{1}=\frac{y+4}{-4}=\frac{z}{-2}, \quad$ where k is a constant.
(i) Show that, for all values of k, the lines intersect, and find their point of intersection in terms of k.
(ii) For the case $k=1$, find the equation of the plane in which the lines lie, giving your answer in the form $a x+b y+c z=d$.
11. Jan 2008 qu. 3

Two fixed points, A and B, have position vectors \mathbf{a} and \mathbf{b} relative to the origin O, and a variable point P has position vector \mathbf{r}.
(ii) Give a geometrical description of the locus of P when \mathbf{r} satisfies the equation $\mathbf{r}=\lambda \mathbf{a}$, where $0 \leq \lambda \leq 1$.
(ii) Given that P is a point on the line $A B$, use a property of the vector product to explain why $(\mathbf{r}-\mathbf{a}) \times(\mathbf{r}-\mathbf{b})=\mathbf{0}$.
(iii) Give a geometrical description of the locus of P when \mathbf{r} satisfies the equation $\mathbf{r} \times(\mathbf{a}-\mathbf{b})=\mathbf{0}$.
12. Jan 2008 qu. 3

A tetrahedron $A B C D$ is such that $A B$ is perpendicular to the base $B C D$. The coordinates of the points A, C and D are $(-1,-7,2),(5,0,3)$ and $(-1,3,3)$ respectively, and the equation of the plane $B C D$ is $x+2 y-2 z=-1$.
(i) Find, in either order, the coordinates of B and the length of $A B$.
(ii) Find the acute angle between the planes $A C D$ and $B C D$.
13. June 2007 qu. 2

A line l has equation $\mathbf{r}=3 \mathbf{i}+\mathbf{j}-2 \mathbf{k}+t(\mathbf{i}+4 \mathbf{j}+2 \mathbf{k})$ and a plane Π has equation $8 x-7 y+10 z=7$.
Determine whether l lies in Π, is parallel to Π without intersecting it, or intersects Π at one point. [5]
14. June 2007 qu. 6

Lines l_{1} and l_{2} have equations $\quad \frac{x-3}{2}=\frac{y-4}{-1}=\frac{z+1}{1}$ and $\frac{x-5}{4}=\frac{y-1}{3}=\frac{z-1}{2}$ respectively.
(i) Find the equation of the plane Π_{1} which contains l_{1} and is parallel to l_{2}, giving your answer in the form $\mathbf{r} . \mathbf{n}=p$.
(ii) Find the equation of the plane Π_{2} which contains l_{2} and is parallel to l_{1}, giving your answer in the form $\mathbf{r} . \mathbf{n}=p$.
(iii) Find the distance between the planes Π_{1} and Π_{2}.
(iv) State the relationship between the answer to part (iii) and the lines l_{1} and l_{2}.
15. Jan 2007 qu. 2

Find the equation of the line of intersection of the planes with equations
$\mathbf{r} .(3 \mathbf{i}+\mathbf{j}-2 \mathbf{k})=4 \quad$ and $\quad \mathbf{r} .(\mathbf{i}+5 \mathbf{j}+4 \mathbf{k})=6, \quad$ giving your answer in the form $\mathbf{r}=\mathbf{a}+t \mathbf{b}$.
16. Jan 2007 qu. 7

The position vectors of the points A, B, C, D, G are given by
$\mathbf{a}=6 \mathbf{i}+4 \mathbf{j}+8 \mathbf{k}, \quad \mathbf{b}=2 \mathbf{i}+\mathbf{j}+3 \mathbf{k}, \quad \mathbf{c}=\mathbf{i}+5 \mathbf{j}+4 \mathbf{k}, \quad \mathbf{d}=3 \mathbf{i}+6 \mathbf{j}+5 \mathbf{k}, \quad \mathbf{g}=3 \mathbf{i}+4 \mathbf{j}+5 \mathbf{k}$ respectively.
(i) The line through A and G meets the plane $B C D$ at M. Write down the vector equation of the line through A and G and hence show that the position vector of M is $2 \mathbf{i}+4 \mathbf{j}+4 \mathbf{k}$.
(ii) Find the value of the ratio $A G: A M$.
(iii) Find the position vector of the point P on the line through C and G, such that $\overrightarrow{C P}=\frac{4}{3} \overrightarrow{C G}$. [2]
(iv) Verify that P lies in the plane $A B D$.
17. June 2006 qu. 3

Find the perpendicular distance from the point with position vector $12 \mathbf{i}+5 \mathbf{j}+3 \mathbf{k}$ to the line with equation $\mathbf{r}=\mathbf{i}+2 \mathbf{j}+5 \mathbf{k}+t(8 \mathbf{i}+3 \mathbf{j}-6 \mathbf{k})$.
18. June 2006 qu. 5

A line l_{1} has equation $\frac{x}{2}=\frac{y+4}{3}=\frac{z+9}{5}$
(i) Find the cartesian equation of the plane which is parallel to l_{1} and which contains the points $(2,1,5)$ and $(0,-1,5)$.
(ii) Write down the position vector of a point on l_{1} with parameter t.
(iii) Hence, or otherwise, find an equation of the line l_{2} which intersects l_{1} at right angles and which passes through the point $(-5,3,4)$.

Give your answer in the form $\frac{x-a}{p}=\frac{y-b}{q}=\frac{z-c}{r}$.
19. Jan 2006 qu. 1

Find the acute angle between the skew lines $\frac{x+3}{1}=\frac{y-2}{1}=\frac{z-4}{-1}$ and $\frac{x-5}{2}=\frac{y-1}{-3}=\frac{z+3}{1}$.
20. Jan 2006 qu. 6

The cuboid $O A B C D E F G$ shown in the diagram has $\overrightarrow{O A}=4 \mathbf{i}, \overrightarrow{O C}=\mathbf{j}, \overrightarrow{O D}=2 \mathbf{k}$, an M is the mid-point of $D E$.
(i) Find a vector perpendicular to $\overrightarrow{M B}$ and $\overrightarrow{O F}$
(ii) Find the cartesian equations of the planes $C M G$ and $O E G$.
(iii) Find an equation of the line of intersection of the planes $C M G$ and $O E G$, giving your answer in the form $\mathbf{r}=\mathbf{a}+t \mathbf{b}$

