FP3 Vectors

1. June 2010 qu.1

The line l_1 passes through the points (0, 0, 10) and (7, 0, 0) and the line l_2 passes through the points (4, 6, 0) and (3, 3, 1). Find the shortest distance between l_1 and l_2 .

2. June 2010 qu.7

A line *l* has equation $\mathbf{r} = \begin{pmatrix} -7 \\ -3 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix}$. A plane Π passes through the points (1, 3, 5) and

(5, 2, 5), and is parallel to l.

(i)	Find an equation of Π , giving your answer in the form $\mathbf{r.n} = p$.	[4]
-----	---	-----

- (ii) Find the distance between l and Π .
- Find an equation of the line which is the reflection of l in Π , giving your answer in the (iii) form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$.

3. Jan 2010 qu. 1

Determine whether the lines
$$\frac{x-1}{1} = \frac{y+2}{-1} = \frac{z+4}{2}$$
 and $\frac{x+3}{2} = \frac{y-1}{3} = \frac{z-5}{4}$
intersect or are skew. [5]

intersect or are skew.

4. Jan 2010 qu. 5

A regular tetrahedron has vertices at the points

$$A(0, 0, \frac{2}{3}\sqrt{6}), \qquad B(\frac{2}{3}\sqrt{3}, 0, 0), \qquad C(-\frac{1}{3}\sqrt{3}, 1, 0), \qquad D(-\frac{1}{3}\sqrt{3}, -1, 0).$$

- $x + \sqrt{3}y + \left(\frac{1}{2}\sqrt{2}\right)z = \frac{2}{3}\sqrt{3}.$ Obtain the equation of the face *ABC* in the form (i) [5]
- Give a geometrical reason why the equation of the face ABD can be expressed as (ii)

$$x - \sqrt{3}y + \left(\frac{1}{2}\sqrt{2}\right)z = \frac{2}{3}\sqrt{3}.$$
 [2]

[7]

[4]

[4]

[4]

Hence find the cosine of the angle between two faces of the tetrahedron. (iii)

5. June 2009 qu.3

A line *l* has equation $\frac{x-6}{-4} = \frac{y+7}{8} = \frac{z+10}{7}$ and a plane *p* has equation 3x - 4y - 2z = 8.

- (i) Find the point of intersection of *l* and *p*. [3]
- (ii) Find the equation of the plane which contains *l* and is perpendicular to *p*, giving your answer in the form ax + by + cz = d. [5]

6. June 2009 qu.6

The plane Π_1 has equation $\mathbf{r} = \begin{pmatrix} 2\\ 2\\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix} + \mu \begin{pmatrix} 1\\ -5\\ -2 \end{pmatrix}$.

(i) Express the equation of Π_1 in the form $\mathbf{r.n} = p$.

The plane Π_2 has equation **r**. $\begin{pmatrix} 7\\ 17\\ -3 \end{pmatrix} = 21.$

(ii) Find an equation of the line of intersection of Π_1 and Π_2 , giving your answer in the form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$. [5]

7. <u>Jan 2009 qu. 3</u>

Two skew lines have equations
$$\frac{x}{2} = \frac{y+3}{1} = \frac{z-6}{3}$$
 and $\frac{x-5}{3} = \frac{y+1}{1} = \frac{z-7}{5}$.

- (i) Find the direction of the common perpendicular to the lines. [2]
- (ii) Find the shortest distance between the lines.

The cuboid *OABCDEFG* shown in the diagram has $\overrightarrow{OA} = 4\mathbf{i}, \overrightarrow{OC} = 2\mathbf{j}, \overrightarrow{OD} = 3\mathbf{k}$, and *M* is the mid-point of *GF*.

- (i) Find the equation of the plane ACGE, giving your answer in the form $\mathbf{r.n} = p$. [4]
- (ii) The plane *OEFC* has equation $\mathbf{r}.(3\mathbf{i} 4\mathbf{k}) = 0$. Find the acute angle between the planes *OEFC* and *ACGE*.
- (iii) The line AM meets the plane OEFC at the point W. Find the ratio AW: WM. [5]

9. June 2008 qu.2

Find the acute angle between the line with equation $\mathbf{r} = 2\mathbf{i} + 3\mathbf{k} + t(\mathbf{i} + 4\mathbf{j} - \mathbf{k})$ and the plane with equation $\mathbf{r} = 2\mathbf{i} + 3\mathbf{k} + \lambda (\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}) + \mu(\mathbf{i} + 2\mathbf{j} - \mathbf{k})$.

10. June 2008 qu.5

Two lines have equations $\frac{x-k}{2} = \frac{y+1}{-5} = \frac{z-1}{-3}$ and $\frac{x-k}{1} = \frac{y+4}{-4} = \frac{z}{-2}$, where k is a constant.

(i) Show that, for all values of k, the lines intersect, and find their point of intersection in terms of k.

[4]

[4]

[4]

[7]

[6]

	(ii)	For the case $k = 1$, find the equation of the plane in which the lines lie, giving your answer in the form $ax + by + cz = d$.	[4]	
11.	<u>Jan 2</u> Two point	fixed points, A and B, have position vectors a and b relative to the origin O, and a variable P has position vector r .		
	(ii)	Give a geometrical description of the locus of <i>P</i> when r satisfies the equation $\mathbf{r} = \lambda \mathbf{a}$, where $0 \le \lambda \le 1$.	[2]	
	(ii)	Given that <i>P</i> is a point on the line <i>AB</i> , use a property of the vector product to explain why $(\mathbf{r} - \mathbf{a}) \times (\mathbf{r} - \mathbf{b}) = 0$.	[2]	
	(iii)	Give a geometrical description of the locus of P when r satisfies the equation $\mathbf{r} \times (\mathbf{a} - \mathbf{b}) = 0$.	[3]	
12. Jan 2008 qu. 3 A tetrahedron <i>ABCD</i> is such that <i>AB</i> is perpendicular to the base <i>BCD</i> . The coordinates of th points <i>A</i> , <i>C</i> and <i>D</i> are $(-1, -7, 2)$, $(5, 0, 3)$ and $(-1, 3, 3)$ respectively, and the equation of the plane <i>BCD</i> is $x + 2y - 2z = -1$.				
	(i)	Find, in either order, the coordinates of <i>B</i> and the length of <i>AB</i> .	[5]	
	(ii)	Find the acute angle between the planes ACD and BCD.	[6]	
13.	<u>June</u> A lin Dete	<u>June 2007 qu.2</u> A line <i>l</i> has equation $\mathbf{r} = 3\mathbf{i} + \mathbf{j} - 2\mathbf{k} + t(\mathbf{i} + 4\mathbf{j} + 2\mathbf{k})$ and a plane Π has equation $8x - 7y + 10z = 7$. Determine whether <i>l</i> lies in Π , is parallel to Π without intersecting it, or intersects Π at one point. [5]		
14.	June	<u>2007 qu.6</u>		
	Line	s l_1 and l_2 have equations $\frac{x-3}{2} = \frac{y-4}{-1} = \frac{z+1}{1}$ and $\frac{x-5}{4} = \frac{y-1}{3} = \frac{z-1}{2}$ respectively.		
	(i)	Find the equation of the plane Π_1 which contains l_1 and is parallel to l_2 , giving your answer in the form $\mathbf{r} \cdot \mathbf{n} = p$.	[5]	
	(ii)	Find the equation of the plane Π_2 which contains l_2 and is parallel to l_1 , giving your answer in the form $\mathbf{r.n} = p$.	[2]	
	(iii)	Find the distance between the planes Π_1 and Π_2 .	[2]	

- [2]
- State the relationship between the answer to part (iii) and the lines l_1 and l_2 . (iv) [1]

15. Jan 2007 qu. 2

Find the equation of the line of intersection of the planes with equations

r.(3i + j - 2k) = 4and $\mathbf{r.}(\mathbf{i} + 5\mathbf{j} + 4\mathbf{k}) = 6$, giving your answer in the form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$. [5]

16. Jan 2007 qu. 7

The position vectors of the points A, B, C, D, G are given by

 $\mathbf{b} = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k}, \quad \mathbf{c} = \mathbf{i} + 5\mathbf{j} + 4\mathbf{k}, \quad \mathbf{d} = 3\mathbf{i} + 6\mathbf{j} + 5\mathbf{k}, \quad \mathbf{g} = 3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$ $\mathbf{a} = 6\mathbf{i} + 4\mathbf{j} + 8\mathbf{k},$ respectively.

The line through A and G meets the plane BCD at M. Write down the vector equation of (i) the line through A and G and hence show that the position vector of M is $2\mathbf{i} + 4\mathbf{j} + 4\mathbf{k}$. [6]

- (ii) Find the value of the ratio AG : AM.
- (iii) Find the position vector of the point *P* on the line through *C* and *G*, such that $\overrightarrow{CP} = \frac{4}{3}\overrightarrow{CG}$. [2] (iv) Verify that *P* lies in the plane *ABD*. [4]

17. June 2006 qu.3

Find the perpendicular distance from the point with position vector $12\mathbf{i} + 5\mathbf{j} + 3\mathbf{k}$ to the line with equation $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + 5\mathbf{k} + t(8\mathbf{i} + 3\mathbf{j} - 6\mathbf{k})$. [6]

18. June 2006 qu.5

A line l_1 has equation $\frac{x}{2} = \frac{y+4}{3} = \frac{z+9}{5}$

- (i) Find the cartesian equation of the plane which is parallel to l_1 and which contains the points (2, 1, 5) and (0, -1, 5).
- (ii) Write down the position vector of a point on l_1 with parameter t.
- (iii) Hence, or otherwise, find an equation of the line l_2 which intersects l_1 at right angles and which passes through the point (-5, 3, 4).

Give your answer in the form
$$\frac{x-a}{p} = \frac{y-b}{q} = \frac{z-c}{r}$$
. [4]

19. Jan 2006 qu. 1

Find the acute angle between the skew lines $\frac{x+3}{1} = \frac{y-2}{1} = \frac{z-4}{-1}$ and $\frac{x-5}{2} = \frac{y-1}{-3} = \frac{z+3}{1}$. [4]

20. Jan 2006 qu. 6

The cuboid *OABCDEFG* shown in the diagram has $\overrightarrow{OA} = 4\mathbf{i}, \overrightarrow{OC} = \mathbf{j}, \overrightarrow{OD} = 2\mathbf{k}$, an *M* is the mid-point of *DE*.

- (i) Find a vector perpendicular to \overrightarrow{MB} and \overrightarrow{OF} [3]
- (ii) Find the cartesian equations of the planes *CMG* and *OEG*. [5]
- (iii) Find an equation of the line of intersection of the planes *CMG* and *OEG*, giving your answer in the form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$ [3]

[1]

[5]

[1]